Progressieve data

Progressieve profilering: een andere manier om gegevens te verzamelen

Een manier om te profileren en gepersonaliseerde ervaringen te bieden zonder database gegevens te gebruiken.

Een tegenstrijdigheid doorbreken die wij als consumenten eisen omdat we een gepersonaliseerde ervaring willen, maar daar vanaf zien ​​als onze gegevens worden verzameld.

Dus hoe begrijpen ze je, plaatsen ze je in de juiste doelgroep en hoe segmenteren ze je als je niet op ja klikt als ze je om toestemming vragen om je gegevens te verzamelen?

Het antwoord ligt in progressieve profilering, en het klinkt veel onheilspellender dan het is.

Decennia lang was het World Wide Web als het Wilde Wilde Westen. Met een eigen goudkoorts bestaande uit gegevens uit cookies van anderen (d.w.z. klantgegevens). Een bron aan gegevens die miljarden winst genereerde.

Door het stroomlijnen van processen, minimaliseren van handelingen en verhogen van het rendement op de investeringen.

Maar het blijft het wilde westen met Hackers, datalekken en onethische bedrijven. Dat maakt gegevensprivacy een punt van zorg, zozeer zelfs dat de overheid de noodzaak van regulering zag. Waardoor er nu moet worden voldoen aan de algemene verordening gegevensbescherming (AVG) van de EU, die regelt hoe gegevens worden verzameld, opgeslagen en beheerd.

Bijna 70% van de consumenten maakt zich zorgen over de hoeveelheid gegevens die bedrijven verzamelen. Nog eens 40% vertrouwt bedrijven hun data niet toe. En 30% is helemaal niet bereid om hun informatie met bedrijven te delen.

De zoektocht naar manieren om relevante content aan consumenten te leveren met respect voor hun recht op controle over hun eigen gegevens. Is waar progressieve profilering om de hoek komt kijken.

Progressive profiling is een benadering voor het verzamelen van persoonlijke data op een privacy conforme manier, men vraagt ​​u om kleine stukjes informatie tijdens u reis door de website.

Hierdoor kunnen er gedetailleerdere gebruikersprofielen gemaakt worden zonder de AVG te schenden. Bovendien legt het nog gedetailleerdere gegevens vast dan standaard gegevensbestanden zouden kunnen, wat een beter inzicht geeft in je voorkeuren. Dat betekent dat u zeer gerichte inhoud, berichten en ervaringen krijgt te zien.

Maar er is een dunne lijn tussen goede progressieve profilering en het overschrijden van grenzen.

* Aantrekken: trekt je aandacht met behulp van contentmarketing, sociale media en betaalde advertenties.

* Verzamelen: gebruik een formulier, quiz, enquête of ander hulpmiddel om kleine hoeveelheden informatie te verzamelen. Het doel is om minimale informatie te vragen, dus het is niet overweldigend (of griezelig).

* Aanpassen: gebruikt de gegevens die over je zijn verzameld en generaliseert deze om profielen te maken en te segmenteren.

* Herhaal: Dit proces gaat door en door als je een nieuwe klant bent.

Het proactief verleiden om je zover te krijgen je gegevens te delen, maar slechts in kleine beetjes tegelijk. Het begint met een paar persoonlijke vragen, zoals je naam en e-mailadres, en gaat daar vandaan verder.

Tot er uiteindelijk een robuuste klant profiel ontstaat dat je segmenteer en indeelt in een bepaalde groep.

Populaire strategieën.

“Welke beroemdheid ben jij?”

‘Hoe zie je er het beste uit?”

“Uit welk jaar is jouw favoriete mode?”

Zo verzamelen ze niet alleen de nodige gegevens, zoals leeftijd, geslacht en e-mail, maar is ook een mogelijkheid om je te segmenteren. Met een gesegmenteerde database die het gemakkelijker maakt om aangepaste inhoud te maken.

En ze zijn niet bang om de informatie te vragen als ze die nodig hebben om de gebruikerservaring te verbeteren: “Rechtstreeks vragen van gegevens die men volgens de AVG niet meer kan verzamelen”. “Die vragen ze wanneer je online gaat browsen, hoeveel je gewoonlijk uitgeeft aan online winkelen en op welke dagen en tijden je eerder e-mails opent en op de inhoud klikt.”

De meeste mensen zijn niet bereid hun informatie te geven, tenzij ze worden gestimuleerd.

Dus werken ze samen met een merk en bieden een korting na voltooiing van een enquête. De informatie uit de enquête wordt ook gedeeld met andere websites en bedrijven in de vorm van brandsharing.

* Restaurantbranche: vraagt om voorkeuren of vraag gasten waar ze de volgende keer willen eten.

* Fitnessbranche: wie ze je zouden aanbevelen voor trainingssessies en bied aan trainingssessies te personaliseren.

* Schoonheidsspecialiste: vraagt om huidtypes om te matchen met het juiste product.

* Reisindustrie: vraagt om de favoriete bestemmingen om te helpen de juiste bestemming te selecteren.

* Detailhandel: vraagt je over je favoriete stijlen (misschien zelfs een decennium als het relevant is).

Een belangrijk ding om te onthouden: online quizzen zijn kort en krachtig. Je hoeft niet te veel vragen te beantwoorden om een ​​waardevolle dataset te bouwen maar net genoeg om je aan te moedigen de rest van de vragen te beantwoorden.

Het doel is om erachter te komen waarom je dingen koopt. Om zo meer te weten over je pijnpunten en je besluitvormingspatronen, zodat ze een persoonlijke ervaring kunnen gegeven bij je bezoek aan de website met premium content.

Die je worden getoond voor slechts een paar kleine stukjes informatie (meestal naam en e-mailadres) om toegang te krijgen tot deze content.

Elke keer geef je iets meer informatie over jezelf vrij via een dynamische website.

Zo kennen ze je interesses, kunnen ze behoeften identificeren en leveren ze je een gepersonaliseerde ervaringen naar je wensen, terwijl jij je gegevens onder controle houdt.

Het zorgt ervoor dat je aanbiedingen relevant en waardevol zijn, zodat het delen van je gegevens een goed idee is.

Alternatieve data

Alternatieve data. Wat is het, wie gebruikt het en waarom is het interessant?

We zoeken steeds meer naar nieuwe informatiebronnen die een onbenutte bron kunnen zijn voor het creëren voorsprong op de concurrentie. Gegevens uit deze gegevensbronnen worden alternatieve data genoemd omdat ze verder gaan dan de typische datasets.

Het gebruik van alternatieve data staat nog maar in de kinderschoenen en het ontdekken van de mogelijke toepassingen is nog maar net is begonnen.

De eerste alternatieve gegevensbronnen bestonden uit creditcardtransacties, weggeschrapte gegevens, geolocatiegegevens van mobiele telefoons, satellietbeelden en weersvoorspellingen.

Recente regelgeving zoals GDPR, CCPA en andere privacykwesties zorgen voor minder beschikbaarheid van sommige van deze bronnen.

Een nieuwe gegevensbron die snel aan populariteit wint, zijn gegevens die rechtstreeks van consumenten worden verzameld op een privacy-conforme manier.

Die gegevens gaan verder dan enquête naar onze beweegredenen en bedoelingen ze brengen ons dagelijkse leven in kaart. Dit type gegevens wordt gebruikt om te voorspellen welke toekomstige aankopen we gaan doen, hoe we denken en het identificeren van specifieke triggers die ons gedrag kunnen voorspellen of beïnvloeden.

Alternatieve gegevens zijn alle gegevens die niet traditioneel wordt gebruikt door de bedrijven waar we klant van zijn. applicaties die we gebruiken of webpagina’s die we bezoeken. De meest bekende gebruikers van alternatieve gegevens zijn algoritme, of risico beheerders, die de gegevens gebruiken om computermodellen te bouwen om voorspellingen van ons gedrag doen.

In de afgelopen tien jaar zijn de bronnen van alternatieve gegevens enorm gegroeid. De meest gebruikte alternatieve datasets zijn gegevens van het internet, creditcardgegevens en gegevens over consumentenvertrouwen.

En ook de komst van de smartphone een decennium geleden bracht allerlei datamogelijkheden met zich mee. Alle apps op uw telefoon zijn bijvoorbeeld een rijke gegevensbron die kunnen worden gebruikt. Smartphones zijn ook een bron van geolocatiegegevens, hoewel dit een beetje controversieel is als het gaat om privacy kwesties.

IoT-gegevens hebben de komende jaren ook het potentieel als nieuwe bron van alternatieve gegevens te worden. Apparaten om ons heen die constant gegevens genereren over ons en onze leefomgeving.

Hoe beter de informatie die we genereren hoe betrouwbaarder de informatie die er wordt geleverd door alternatieve data. Belangrijk is dat deze informatie beschikbaar is.

Met veel interne en externe gegevensbronnen, beschikken we over een groter scala aan inputs en analyses voor besluitvorming en informatie.

Data

Data Wetenschap, Big Data en Data Analyse termen die we allemaal wel eens hebben gehoord. Afgezien van het woord data, hebben ze alle drie betrekking op verschillende verwerkingswijze.

Misschien is het begrip ‘data als goud is’ er eentje die u vaak voorbij hoort komen. Maakt duidelijk dat gegevens tegenwoordig erg belangrijk geworden zijn voor bedrijven en worden beschouwd als het middel waarop elk bedrijf een concurrentievoordeel kan behalen of een disruptieve strategie kan creëren.

Met zettabytes aan gegevens die een gezonde groei laten zien, lijkt de groei hoeveelheid data de komende jaren in de dubbele cijfers te liggen. Tevens is er een toename van een aantal rollen en kansen die te maken hebben met het benutten van deze gegevens.

Wat betekend dat we ervaring op moeten doen en moeten zorgen dat de datacowboys uit dit vakgebied verdwijnen, want hun aanwezigheid is nogal verwarrend. En maakt het werken met data ongewenst moeilijk, voor iedereen die wil uitblinken in datagerelateerd werk.

Waarvan data wetenschap de eerste is waarbij de term ‘wetenschap’ wordt geassocieerd met data, een breed gebied waar wetenschappelijke methoden, wiskundige vergelijkingen, statistiek en tal van andere hulpmiddelen die worden toegepast op datasets om de vereiste kennis en inzichten te extraheren.

In hun ruwe vorm zijn gegevens onbegrijpelijk en abstract, ongefilterde en misleidend vol van patronen en informatie. Om zinvolle conclusies trekken uit deze verzamelde gegevens is data wetenschap noodzakelijk.

Er zijn al veel gebieden waar data wetenschap de samenleving heeft ontwricht en de manier waarop dingen werkten heeft veranderd. Hier zijn enkele van de prominente gebieden waar data wetenschap een grote rol speelt:

In de reclame en online marketing is u vast opgevallen hoe sommige van de producten waarnaar u zoekt, worden weergegeven in advertenties op willekeurige websites? Dit staat bekend als retargeting of remarketing. De producten die aan u worden getoond, worden bepaald met behulp van data wetenschap.

Met behulp van data wetenschap kunnen de patronen of het gedrag van de bezoeker worden bepaald waarna de advertenties op de websites daarop worden gericht.

Data wetenschap in zoekmachines zit in de algoritmen die door zoekmachines worden gebruikt. Om de relevante resultaten voor een zoekopdracht te leveren, gebruiken zoekmachines de hulp van data wetenschap om de enorme hoeveelheid zoekopdrachten te verwerken en om te zetten in relevante patronen. Dit levert de resultaten die bij een gebruiker passen en helpt de zoekmachine te blijven ontwikkelen.

Tegenwoordig is e-commerce een prominente constante geworden met veel online aankopen. Dit heeft ertoe geleid dat logistieke bedrijven hun bezorgervaring hebben verbeterd; wat ertoe leidt dat bedrijven data wetenschap gebruiken om de beste routes, transportmodi en levertijden te begrijpen.

Wat weer tot een toename van fraude en risico’s leid ertoe dat bedrijven constant scherp moeten zijn om niet in slechte leningen, schulden of verliezen te vervallen. Met behulp van data wetenschap kunnen de bedrijven een bredere beveiligingscontrole uitvoeren en de profilering van klanten verbeteren, en ook eerdere gegevens analyseren om patronen te vinden die hen zouden helpen bij het opsporen van fraude en risico’s.

Dan big data, big data is een grote hoeveelheid gegevens (zowel gestructureerd als ongestructureerd) die niet met traditionele methoden kan worden geanalyseerd. De term ‘big data’ is op zichzelf een relatief nieuwe term en het belang ervan is de afgelopen jaren gegroeid, waarbij organisaties de verschillende voordelen die big data biedt beginnen te zien.

Hoewel data er altijd al is geweest en het verzamelen van data ook niets nieuws is, is het concept van big data totaal anders. Big data kan worden gedefinieerd door drie V’s: volume, snelheid en variëteit.

De mogelijkheid om met deze gegevens om te gaan en de betekenisvolle patronen te analyseren, zal ons helpen om, gepersonaliseerde diensten aan te bieden, verspilling te verminderen en snel een beslissing te nemen over ons koopgedrag. Relatief nieuw in vergelijking met de traditionele methode om analyses te gebruiken.

Als laatste data analyse waarvan kan worden gezegd dat het bijna vergelijkbaar is met datawetenschap, maar het heeft in vergelijking een meer gerichte rol. Bij data analyse is de analyse van gegevens geconcentreerd op specifieke gebieden met specifieke doel voor ogen.

We gebruiken data analyse om bepaalde correlaties te vinden tussen diensten of producten en wat klanten willen om weloverwogen zakelijke beslissingen te nemen. Het wordt ook gebruikt door wetenschappers of onderzoekers om specifieke theorieën te verifiëren of tot bepaalde conclusies te komen.

Een van de veelgebruikte gebieden van data analyse is business intelligence; waardoor organisaties beslissingen en prestaties kunnen verbeteren en optimaliseren.

Data analyse heeft de huidige online reis, winkel en zoek omgeving gevormd en offline onze ervaringen in de horeca en winkels veranderd. Via data analyse kunnen bedrijven inzicht krijgen in onze  ervaringen en voorkeuren. Ze kunnen begrijpen wat er momenteel ontbreekt, wat we willen of op wie ze zich moeten richten. Tonen ze aanbiedingen of doen zelfs aanbevelingen op basis van onze interesses op verschillende sociale media of andere websites.

Maar ook in de  gezondheidszorg zijn er veel dingen die door data analyse kunnen veranderen en de afgelopen jaren zijn veranderd. Data analyse kan helpen bij het verbeteren van de medische zorg en de behandelingen optimaliseren.

Zo hebben Data Wetenschap, Big Data en Data Analyse alle hun eigen toepassingen en risico’s. Maar bieden ze ook kansen die soms disruptief worden gezien in onze huidige samenleving.

GAIA-X

De Europese cloud vordert en de lancering van de eerste applicaties staat gepland voor eind 2021. Maar is dit een belangrijke stap voor de digitale soevereiniteit van Europa. En kunnen bedrijven binnen de EU ook echt profiteren van GAIA-X.

Commissievoorzitter Ursula von der Leyen pleit voor een sterke Europese data-economie, als krachtige motor voor innovatie. De uitrol van een Europese cloud op basis van GAIA-X is daarbij een belangrijk element.

Het GAIA-X vindt zijn oorspronkelijk in Duitsland en Frankrijk om samen een ​​Europees data-ecosysteem te creëren. En het idee op zich werd gelanceerd in 2019 en is sindsdien continu doorontwikkeld.

Echter voor het welslagen van het GAIA-X is het cruciaal om zoveel mogelijk Europese partners aan boord te halen. Vrijwel alle bedrijven in Europa zijn afhankelijk van vertrouwde data-ecosystemen. Maar vooral middelgrote bedrijven hebben behoefte aan gemakkelijke toegang tot datanetwerken die voldoen aan de hoge Europese veiligheidsnormen. Om de digitale soevereiniteit van Europa te realiseren, in de zin van het versterken van de eigen competenties en technologieën, is het succes van dit project dus cruciaal.

Om zich in de internationale concurrentie te kunnen laten gelden, zouden ook bedrijven die werken met gebruikersdata in toenemende mate bij het project betrokken moeten worden. Hierdoor kan worden gegarandeerd dat de digitale datadiensten die via GAIA-X worden geleverd, zo goed mogelijk aan de eisen voldoen door het gebruik van GAIA-X in het bedrijfsleven. Door de uniforme manier van werken zou de wetenschap de verzamelde data beter kunnen benutten. Doordat alle geïnteresseerde partijen die de waarden in GAIA-X volgen de data kunnen delen.

Het gemeenschappelijke doel moet zijn GAIA-X samen te ontwikkelen en gebruiken binnen de huidige Europesche regelgeving.

Gaia-X vertegenwoordigt de volgende generatie data-infrastructuur en is een open, transparant en veilig digitaal ecosysteem. Waar data en diensten beschikbaar kunnen worden gesteld, verzameld en gedeeld in een omgeving van vertrouwen.

De architectuur van Gaia-X is gebaseerd op het principe van decentralisatie. Gaia-X is het resultaat van een groot aantal afzonderlijke platforms die allemaal een gemeenschappelijke standaard volgen – de Gaia-X-standaard.

Samen ontwikkelen we in Europa een data-infrastructuur op basis van de waarden openheid, transparantie en vertrouwen. Er ontstaat dus geen cloud, maar een netwerksysteem dat veel cloudserviceproviders met elkaar verbindt.

Zodat burgers hun data kunnen delen en dat zij er controle over houden. Burgers moeten op deze manier kunnen beslissen wat er met hun gegevens gebeurt, waar deze worden opgeslagen en altijd de soevereiniteit van gegevens behouden.

Pipl

China heeft een wet op de bescherming van persoonsgegevens aangenomen. De wet Personal Information Protection Law (PIPL) gaat op 1 november in. 

En is een signaal van de intentie van de communistische leiders om de gegevensverzameling commerciële Chinese internetbedrijven aan te pakken, door wettelijke beperkingen op te leggen aan het verzamelen van gebruikersgegevens.

De nieuwe Chinese toezichthouder die zich richt op het gedwongen afstaan van gegevens voor internetgebruikers is vanaf nu ook actief.

China is met de Personal Information Protection Law (PIPL) een stap dichter bij het aanpakken van het ongevraagd gegevensverzamelen..

De nieuwe wet vereist dat bedrijven hun gebruikers een opt in en opt out optie bieden. En zo zelf kunnen beslissen over hoe hun informatie verzameld en hoe deze wel of niet kan worden gebruikt, zoals de mogelijkheid om niet te worden gevolgd voor marketingdoeleinden of alleen informatie te krijgen op basis van persoonlijke kenmerken.

De wet stelt ook eisen aan de manier waarop gegevensverwerkers toestemming van individuen dienen te verkrijgen om gevoelige soorten gegevens te kunnen verwerken, zoals biometrische, medische en gezondheids-, financiële- en locatiegegevens.

Bedrijven die illegaal gebruikersgegevens zonder toestemming van de gebruiker verwerken, lopen het risico dat hun service wordt opgeschort of beëindigd.

Alle westerse bedrijven die zaken doen in China waarbij persoonlijke gegevens van burgers worden verwerkt, moeten rekening houden met de jurisdictie van de wet. Dat betekent wettelijke vereisten, zoals de noodzaak om lokale vertegenwoordigers te hebben die rapporteren aan toezichthoudende instanties in China.

De kernelementen van de nieuwe wet vertonen overeenkomsten met de wetgeving van de Europese Unie. Waar de Algemene Verordening Gegevensbescherming (AVG) burgers een uitgebreide reeks rechten biedt.

Maar de context waarin gewerkt word is natuurlijk heel anders, niet in het minst gezien de manier waarop de Chinese staat uitgebreide gegevens gebruikt om het gedrag van zijn eigen inwoners in de gaten te houden en te controleren.

Alle beperkingen die de PIPL zou kunnen stellen aan de mogelijkheid van Chinese overheidsdiensten om gegevens over haar inwoners te verzamelen. Zijn misschien niet veel meer dan een poging om een ​​dekmantel te creëren om de voortdurende gegevensverzameling door de Chinese Communistische Partij en het staatsveiligheidsapparaat aan het oog te onttrekken.

Of de nieuwe regels voor gegevensbescherming zouden kunnen worden gebruikt om de macht van de gehele technologiesector verder te reguleren is op dit moment nog onduidelijk.

Besef cq noodzaak

Het besef van de noodzaak van onderling verbonden systemen die gebruik maken van het internet om dingen gemakkelijker te vereenvoudigen, zorgt voor een revolutie in de manier waarop we leven.

Het internet van dingen is inmiddels de belangrijkste bron voor het verzamelen van gegevens. De analyse en verwerking van deze verzamelde gegevens hebben geleid tot tal van moderne analytische oplossingen. 

Het internet van dingen geeft zo een nieuwe betekenis aan het woord “intelligent”. Door een relatie aan te gaan met andere technologieën, processen en data-analyse op een economische en schaalbare manier.

Omdat het Internet van dingen een datagestuurde technologie is, draagt het aanzienlijk bij aan de toename van beschikbare informatie en beïnvloed het de manier waarop we al jaren hebben gewerkt. Steeds meer innovatieve digitale oplossingen die mogelijk bestaan uit betere, meer geavanceerde analyses en data gerichte besluitvorming kenmerken veranderingen. Één voortdurend evoluerend technologie, die het ons soms moeilijk maakt om de technologie en de voordelen ervan te begrijpen.

Constante onderzoek, van de implementatie en de opwaardering van de IoT-technologie heeft ons ertoe gebracht meer geavanceerde mechanismen te ontwikkelen waarmee gegevens kunnen worden verwerkt.

We ontwikkelen goedkope sensor en nieuwe communicatietechnieken waarmee we miljarden apparaten met elkaar kunnen verbinden en waarover we informatie delen.

Door Global Positioning Systems (GPS) weten we waar een voorwerp is, en kunnen we ongevallen te voorkomen. Ook kunnen we het productieproces en onderhoud van apparatuur stroomlijnen en beter beheren via het internet van dingen.

Slimme waterpompen, irrigatiesystemen, controleren niveaus en en bepalen mee hoeveelheid pesticiden we kunnen gebruiken tijdens groei van de gewassen. Waardoor de productie en kwaliteit van de oogst een boost kan worden geven.

Integratie of levensreddende technologieën in de gezondheidszorg zullen de kwaliteit van het leven verbeteren en onze gezondheid door middel van constante monitoring op peil houden.

Ook de omgeving waarin we wonen wordt beïnvloed door slimme verwarmingsketels, automatische deursloten,. En meer geavanceerde functie’s in ons huis waarvan intelligente/slimme verlichting  slechts een van de voorbeelden is.

Daarbij wisselen we voortdurend informatie uit, wat betekent dat de er voortdurend waardevolle gegevens en inzichten worden verzamelt door middel van interactie.

De informatie die wordt verzameld, is niet beperkt tot de apparaten die eigendom zijn van bedrijven of organisaties. Dit proces omvat ook elk persoonlijk apparaat in en buiten ons huis.

Hoeveel data

Hoeveel data wordt er elke dag gecreëerd? Hoeveel data gebruikt de gemiddelde persoon? Onze smartphones en tablets, alle innovaties in mobiele netwerken en wifi, zorgen voor de creatie en hoger verbruik van data.

Dus hoeveel data er elke dag geproduceerd in onze nieuwe werkelijkheid, heeft elke dag een ander antwoord. Voordat we ingaan op de vraag hoeveel data we produceren, moeten we eerst een opsomming maken.

* In 2020 creëerden mensen elke seconde bijna 2 MB aan data.

* Tegen 2025 zullen er wereldwijd meer dan 200 zettabytes aan gegevens in cloudopslag staan..

* Bijna 50 zettabyte aan gegevens vormen ons digitale universum.

* Elke dag worden meer 300 miljard e-mails verzonden en 500 miljoen tweets gemaakt.

Maar als we het hebben over hoeveel data die er elke dag wordt gecreëerd, is de huidige schatting meer dan 1 biljoen MB per dag.

Zelfs terwijl we deze post lezen, slaat we veel onbruikbare gegevens op. We kunnen overwegen om die ruimte weer vrij te maken en onnodige gegevens te verwijderen. Echter de praktijk leert ons dat maar weinig mensen dit doen, met als resultaat bergen onbruikbare gegevens.

Aan het begin van dit jaar waren er wereldwijd bijna 5 miljard actieve internetgebruikers.

Dat is duizelingwekkend, als je bedenkt dat dit er in 2013 slechts 2,6 miljard waren.

De mobiele telefoon of moeten we smartphone zeggen, is met 4,28 miljard unieke gebruikers, is de aanjager van deze duizelingwekkende groei. En daarmee de grootste generator van data in onze wereld op dit moment.

En de mobiele telefoon maakt het mogelijk om persoonsgericht advertenties, content en data te genereren.

Daarbij verovert IoT inmiddels onze woningen en deze groei vertoont geen tekenen van vertraging. Sterker nog, de industrie is booming. Naarmate het aantal IoT-apparaten toeneemt, neemt ook het aantal actieve gebruikers toe.

In 2019 was het aantal aangesloten IOT apparaten slechts een kleine 8 miljard, dit aantal zal voor 2030 meer dan verdrievoudigen zijn.

Geholpen door slimme netwerken, volgsystemen, monitoring, autonome voertuigen en infrastructuur. En dat zijn er al meer dan drie miljard, gadgets zoals lampen, huishoudelijke apparaten, slimme meters, alarmen en volgsystemen.

Hoe groot is de grootte van de gegevens?

En hoe maken we van kleine hoeveelheden gegevens big data.

Hoeveel is een byte?

1 byte is gelijk aan 0,001 kilobyte.

Hoeveel is een kilobyte?

1 kilobyte is gelijk aan 1024 bytes.

Hoeveel is een megabyte?

1 megabyte is gelijk aan 1024 kilobytes.

Hoeveel is een gigabyte?

1 gigabyte is gelijk aan ongeveer 1024 megabytes.

Hoeveel is een terabyte?

1 terabyte is gelijk aan 1024GB.

Hoeveel is een petabyte?

1 petabyte is gelijk aan 1024 terabyte.

Hoeveel is een exabyte?

1 exabyte is gelijk aan ongeveer 1024 petabyte.

Hoeveel is een zettabyte?

1 zettabyte is gelijk aan ongeveer een biljoen gigabyte.

Hoeveel is een yottabyte?

1 yottabyte is gelijk aan 1.204 zettabyte.

Goed om te onthouden het grootste deel van de gegevens wereldwijd is in de afgelopen twee jaar gegenereerd, het zal interessant zijn om te volgen ‘hoeveel gegevens er elke dag worden gegenereerd’ en hoeveel dat over een jaar is. De hoeveelheid gegevens zal zelfs nog meer toenemen in de komende vijf tot tien jaar, waardoor we in de komende jaren radicaal anders zullen moeten gaan denken over gegevens en de rol van data in onze samenleving.

Data privacy

De afgelopen jaren hebben we een toename gezien in het publieke debat en het bewustzijn rond dataprivacy. Met het verschijnen van strikte privacyregels (AVG), dagelijkse nieuwsartikelen over datalekken, is privacy een zorg geworden voor ons allemaal. Met als gevolg dat gegevensprivacy een grondrecht is geworden, waarbij steeds meer mensen het als een mensenrecht beschouwen.

Jarenlang ging het beschermen van de privacy over het geven van toestemming bij online belevingen en hoe onze gegevens ‘veilig’ waren. In de realiteit van vandaag is dit begrip verdwenen, omdat we online te veel waarde krijgen om onszelf te beperken omwille van onze ‘privacy’. Zou dit een reden kunnen zijn om privacy te heroverwegen en in plaats te focussen op data-eigendom.

We zitten midden in de groeistuip van het internet. De meesten van ons maken zich geen zorgen bij het delen van foto’s van onze vakantie of waar we net ingecheckt zijn. Deze onschuldige dingen zijn inmiddels veranderd. De eindeloze rij van privacy schandalen en inbreuken op ons vertrouwen, hebben de betrouwbaarheid van het internet geschaad.

Desalniettemin, zijn we na de meest digitale jaar ooit zijn we meer online gaan leven en verhuizen steeds meer diensten naar de digitale wereld, meer dan ooit tevoren, wat duidelijk maakt dat het delen van gegevens nergens toe leidt. We delen meer gegevens en deze gegevens zijn een handelsartikel geworden en vereiste voor bijna elke digitale interactie, is het daardoor tijd om een ​​nieuw standpunt in te nemen waarbij we onze gegevens zelf beheren terwijl we ons op het internet bewegen.

Te lang hadden we niets te zeggen over onze gegevens, maar met de wereldwijde privacy trend, regelgeving zoals de AVG, CCPA en LGPD, die onze gegevens definiëren als een persoonlijk bezit, dat toegankelijkheid en eigendom betekend voor onze eigen data die de nieuwe standaard moet worden.

Komt het er eigenlijk op neer dat er niet zoiets bestaat als een veilig en risicovrij internet; datalekken gebeuren nu eenmaal. En we moeten onze relaties met bedrijven koesteren zonder de waarde die we ervoor terugkrijgen te beperken.

Als onze gegevens zijn persoonlijk goed, zo moeten we ze behandelen zoals elk ander goed en kijken naar de waarde versus de kosten van het delen ervan. Om de balans te vinden, moeten we begrijpen welke gegevens we delen en de bijbehorende risico’s en wat we ervoor terugkrijgen. Velen van ons zullen het niet erg vinden om onze gegevens te delen in ruil voor gepersonaliseerde ervaringen, zoals het krijgen van aanbevelingen op basis van onze luistergeschiedenis of het hebben van een smartwatch die onze vitale lichaamsfuncties in de gaten houdt.

Maar het is niet altijd zo dat je er voldoende voor terug krijgt, je moet weten met wie of wat je gegevens deelt om weloverwogen beslissingen te kunnen nemen.

De kernprincipes van data-eigendom:

• Toegang en transparantie: om te weten welke data je deelt, met wie, wat bedrijven ermee kunnen / doen en wat de risico’s kunnen zijn.

• Keuze en controle: je moet een grens kunnen trekken, welke gegevens je wilt delen op basis van de toegevoegde waarde die je ervoor terug krijgt. Het delen van gegevens kan een goede zaak zijn, zolang het voor beide partijen dezelfde waarde biedt; als dit niet het geval is, moet je het eigendom van die gegevens terug te kunnen nemen.

Door de wereldwijde privacyregelgeving die consumenten gegevensrechten geeft, eisen steeds meer consumenten eigendom van hun persoonlijke gegevens. Transparantie, gemakkelijke toegang en controle over hun gegevens, is waardoor gegevensprivacy en eigendom een ​​noodzaak geworden. Het is geen toeval dat focus op privacy de komende jaren verdubbelt en een van de belangrijkste onderscheidende factoren is bij onze beslissingen in de toekomst.

Dit is ook het moment om te kijken naar verantwoorde gegevensverzameling, anonimiseren, encryptie en minimalisering om het vertrouwen van ons de klanten terug te winnen. Aangezien datalekken en privacyschandalen dagelijkse kost worden, moeten we onze gegevens op alle mogelijke manieren beschermen.

En wat als geen enkel bedrijf zichzelf echt kan beschermen, en dus is een datalek niet een kwestie van of, maar eerder van wanneer. Bedrijven moeten dit meenemen bij het evalueren van hun beleid voor het verzamelen en bewaren van gegevens. Gegevensinbreuken heeft niet alleen gevolgen voor de privacy- en juridische teams, maar ook voor het aanzien van het bedrijf, de merkreputatie en het vertrouwen die ze in de loop der jaren hebben opgebouwd enorm schaden.

Bedrijven moeten ons actief laten zien, dat ze om onze privacy geven door een gemakkelijke manier te bieden om onze rechten uit te oefenen, dan zullen ze worden beloond met een groter vertrouwen.

De toekomst ziet er veelbelovend uit waarin data-eigendom meer zal worden dan alleen een last, een cruciaal onderdeel van de gebruikerservaring, merkreputatie, vertrouwen en de resultaten.

Data voor veiligheid

Data analyse is duidelijk in opkomst en transformatiestrategieën zijn met jaren versneld. Waarbij initiatieven bijna uitsluitend zijn gericht op efficiëntie en verbeterde besluitvorming rond activiteiten, zoals productie, verkoop, toeleveringsketen en boekhouding.


Ondertussen is het meeste veiligheidsbeheer nog steeds grotendeels niet geautomatiseerd, met behulp van Excel-spreadsheets en archiefkasten vol papieren dossiers. Waarmee vaak pas wordt gereageerd op incidenten in plaats van ze in de eerste plaats te voorkomen. Maar als het om veiligheid gaat, is mitigatie naar data analyse meestal too little, too late.


Letsel op de werkplek kost een land als de verenigde staten $ 171 miljard per jaar, waarbij er in dat bedrag ook een groot aantal vermijdbare dodelijke arbeidsongevallen zijn. Niet alleen zijn alle kosten hoog, maar letsel op de werkplek brengt ook op andere manieren schade toe. Met name een machine die betrokken is bij een ernstig ongeval zal een week of langer niet werken, waardoor de productie wordt vertraagd en klanten mogelijk naar andere productiebronnen gaan.


Arbeidsongevallen dragen ook bij aan een negatief beeld van de maakindustrie, wat werving en aanwerving kan belemmeren. Dit draagt bij aan de hindernissen waarmee fabrikanten al te maken hebben bij het concurreren om talent met bedrijven die hogere lonen aanbieden en bonussen ondertekenen.


Het wijst allemaal op de noodzaak om voorspellende, data gestuurde veiligheid een Industrie 4.0-mijlpaal te maken als je effectief willen concurreren om werknemers en klanten.


Het goede nieuws is dat we al beschikken over ten minste enkele van de technologieën om belangrijke veiligheidsgegevens te verzamelen. Zoals realtime monitoring, waarbij sensoren worden gebruikt om bij te houden of een machineonderdeel zodanig versleten is dat het defecte producten gaat produceren of helemaal niet meer werkt. Hierdoor kan  het onderdeel vervangen worden voordat het gevolgen heeft voor de kwaliteit of productieschema’s.


Evenzo kunnen gegevens van machinesensoren detecteren worden gebruikt om het risico een werknemer loopt. Met dergelijke inzichten kan men onderhoud of reparatie plannen voordat er een probleem ontstaat.


Analyse- en rapportagefunctionaliteit stelt ons in staat te profiteren van AI en machine learning voor diepere inzichten in de bescherming van de werknemers.


De juiste gegevens voor zinvolle inzichten
Naast het structureren van  gegevens, moeten we er ook voor zorgen dat we de juiste informatie verzamelen. De ervaring van één geeft vaak niet het inzicht in een aantal veelvoorkomende fouten van de ander.


De les is dat het beter is om meer en meer gedetailleerde gegevens te verzamelen, in plaats van te proberen te anticiperen op hoe je deze wil groeperen bij het uitvoeren van rapporten of het analyseren van de informatie.


Het vastleggen van gedetailleerde gegevens wordt nog belangrijker, aangezien toepassingen steeds vaker kunstmatige intelligentie (AI) en machine learning-mogelijkheden bevatten die duizenden gegevenspunten kunnen scannen om associaties te vinden die mensen waarschijnlijk zullen missen.


Met gedetailleerde gegevens bij de hand kun je profiteren van de analyse- en rapportagefunctionaliteit in applicaties om incidenten te voorkomen en naleving door de overheid en de industrie te vergemakkelijken. En ze zullen goed gepositioneerd zijn om te profiteren van AI en machine learning voor nog diepere inzichten in het proactief beschermen van werknemers in de toekomst.

Data Governance Act

Om het delen van gegevens in de hele EU te stimuleren zijn er nu regels opgesteld.

Waarmee Europa gebruik gaat maken van het potentieel van zijn steeds groter wordende stroom aan gegevens. Gegevens delen door vertrouwen en meer controle voor burgers, bedrijven. Europa scherpt bepalingen over exclusiviteit aan en stelt sancties voor overtredingen voor.

De regels zijn er om het beschikbaar stellen van meer gegevens te vergemakkelijken maar ook om nieuwe producten en innovatie te creëren, met name op het gebied van kunstmatige intelligentie.

De EU Data Governance Act (DGA), is gericht op het vergroten van het vertrouwen in het delen van gegevens, het creëren van nieuwe EU-regels voor de neutraliteit van gegevensmarkten en het vergemakkelijken van het hergebruik van bepaalde gegevens die in het bezit zijn van het publiek sector bijv bepaalde gezondheids-, landbouw- of milieugegevens, die voorheen niet beschikbaar waren op grond van de opendatarichtlijn.

Het faciliteren van het delen van gegevens is ook een voorwaarde om het potentieel van kunstmatige intelligentie te ontsluiten en start-ups en bedrijven te helpen een ecosysteem te ontwikkelen dat is gebaseerd op EU-normen en -waarden.

Het Europese Parlement heeft de reikwijdte van de wetgeving verduidelijkt, met name met betrekking tot gegevensbemiddelingsdiensten, om ervoor te zorgen dat grote technologiebedrijven onder het kader vallen.

Overheidsinstanties moeten vermijden overeenkomsten te sluiten die exclusieve rechten scheppen voor het hergebruik van bepaalde gegevens, de voorstellen om exclusieve overeenkomsten te beperken tot een periode van 12 maanden, in een poging om meer gegevens beschikbaar te maken voor kmo’s en start- opstaan.

Gevoelige overheidsgegevens mogen alleen aan derde landen worden doorgegeven als ze een vergelijkbaar beschermingsniveau genieten als in de Europa. De Europesche Commissie zal via een gedelegeerde handeling aangeven of een derde land dergelijke bescherming biedt, waardoor het Parlement inspraak kan hebben over het besluit om gegevens te delen.

De lidstaten moeten zelf sancties vaststellen voor overtredingen.

Om het potentieel te benutten van het gebruik van gegevens die vrijwillig beschikbaar zijn gesteld door middel van geïnformeerde toestemming of van algemeen belang, zoals wetenschappelijk onderzoek, gezondheidszorg, de bestrijding van klimaatverandering of het verbeteren van de mobiliteit, moet de wetgeving gegevensverzamelingen opzetten over een vrijwillig registratiesysteem van ‘dataaltruïsme’ in de EU erkende organisaties.

Een Schengen voor data zou met de op gestelde regels mogelijk moeten zijn.

“Het doel om het delen van gegevens gemakkelijker te maken, niet moeilijker. Er ligt een enorm potentieel voor groei en innovatie in een functionerende data-economie. De Data Governance Act (DGA) zal deze ontwikkeling helpen op gang te brengen”.

Al waren we laat in de Europesche gemeenschap met de revolutie op het gebied van persoonlijke gegevens, die de groei van de grote digitale bedrijven van vandaag voedde.

Er komt nu een industriële datarevolutie aan. Daarbij wil Europa weer voorop lopen door basisregels vast te stellen om vanaf de start eerlijke concurrentie en toegang tot gegevens te garanderen. Daarbij stellen we neutraliteit en vertrouwen centraal in Europa. Gegevens moeten gemakkelijk, veilig en vrij door de Europesche gemeenschap kunnen worden verplaatst.

De hoeveelheid gegevens die door overheidsinstanties, bedrijven en burgers wordt gegenereerd zal tussen 2018 en 2025 naar verwachting met vijf vermenigvuldigen. De nieuwe regels zouden het mogelijk maken om deze gegevens te benutten en zullen de weg vrijmaken voor sectorale Europese dataruimten om ten goede komen aan de samenleving, burgers en bedrijven.